Integral de Gauss

En el presente artículo se abordará el tema de Integral de Gauss, el cual ha generado interés y debate en diferentes ámbitos de la sociedad. Integral de Gauss ha capturado la atención de investigadores, expertos, e incluso del ciudadano común, debido a su relevancia e impacto en diversos aspectos de la vida cotidiana. A lo largo de los años, Integral de Gauss ha sido objeto de análisis, discusión y reflexión, lo que ha dado lugar a una variedad de opiniones y perspectivas en torno a este tema. En este sentido, resulta de gran importancia profundizar en el conocimiento y comprensión de Integral de Gauss, con el objetivo de enriquecer el debate y promover una visión integral y crítica al respecto. Por tanto, a lo largo de las siguientes líneas se explorarán diferentes dimensiones de Integral de Gauss, con el propósito de ofrecer una mirada completa y objetiva sobre este tema de relevancia para la sociedad actual.

Función gaussiana . El área encerrada bajo esa curva con el eje x es .

En matemáticas, la integral de Gauss, integral gaussiana o integral de probabilidad, es la integral impropia de la función gaussiana sobre toda la recta de los números reales. Debe su nombre al matemático y físico alemán Carl Friedrich Gauss, y su valor es:

Esta integral tiene amplias aplicaciones, incluyendo normalización, en teoría de la probabilidad y transformada continua de Fourier. También aparece en la definición de la función error. No existe ninguna función elemental para la función error, como se puede demostrar mediante el algoritmo de Risch, por lo que la integral Gaussiana no puede ser resuelta analíticamente con las herramientas del cálculo. O sea, no existe una integral indefinida elemental para

pero sí es posible evaluar la integral definida

.

Cálculo de la Integral

Coordenadas Polares

La forma más común de calcular la integral de Gauss es mediante integración doble en el sistema cartesiano de coordenadas, para después hacer un cambio de coordenadas a coordenadas polares y calcular el valor. Se procede de la siguiente manera:

Se define

como la integral que queremos calcular. Podemos definir como el producto de la integral con ella misma y mediante el Teorema de Fubini podemos expresar la integral como

Procedemos a realizar un cambio de variables a coordenadas a polares:

donde el factor es consecuencia de calcular el determinante del cambio de variable de coordenadas cartesianas a polares, y aparece al hacer un cambio de variable tal que , . Así obtenemos

por lo tanto

Coordenadas Cartesianas

Una técnica diferente para calcular el valor de la integral gaussiana es la siguiente.

Comencemos definiendo

por lo que

Notemos que el integrando, es decir , es una función par por lo que

entonces

Sea

entonces

Por lo tanto

Relación con la función Gamma

La función gamma está dada por

y un resultado destacado de esta función es cuando pues

considerando este resultado veamos qué relación tiene con la integral gaussiana, comencemos considerando que

pues una función par.

Al hacer el cambio de variable obtenemos

entonces

Esto muestra por qué el factorial de la mitad de un entero es un número irracional múltiplo de , más generalmente

Generalizaciones

Integral de una función gaussiana

La integral de una función Gaussiana arbitraria es

con . Una forma alternativa es

Esta expresión es útil para calcular momentos de algunas distribuciones de probabilidad continuas relacionadas con la distribución normal, como la distribución log-normal.

Integrales de forma similar

donde es un entero positivo y denota el doble factorial.

Véase también

Referencias